
Communicating Process Architectures 2014

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2014

© 2014 The authors and Open Channel Publishing Ltd. All rights reserved.

1

FDR into The Cloud

Thomas GIBSON-ROBINSON and A. W. ROSCOE

Department of Computer Science, University of Oxford, UK

{thomas.gibson-robinson, bill.roscoe}@cs.ox.ac.uk

Abstract. In this paper we report on a successful extension to the CSP refinement
checker FDR3 that permits it to run on clusters of machines. We demonstrate that it is
able to scale linearly up to clusters of 64 16-core machines (i.e. 1024 cores), achieving
an overall speed-up of over 1000 relative to the sequential case. Further, this speed-up
was observed both on dedicated supercomputer facilities, but more notably, also on
a commodity cloud computing provider. This enhancement has enabled us to verify
a system of 1012 states, which we believe to be the largest refinement check ever
attempted by several orders of magnitude.

Keywords. CSP, FDR, model checking, MPI, supercomputer, The Cloud

Introduction

FDR (Failures Divergence Refinement) is the most widespread refinement checker for the
process algebra CSP [1,2,3]. FDR takes as input a list of CSP processes, written in a lazy
functional language known as machine-readable CSP (henceforth CSPM), and is able to
check if the processes refine each other according to the CSP denotational models (e.g. the
traces, failures and failures-divergences models). It is also able to check for more properties
(including deadlock-freedom, livelock-freedom and determinism) by constructing equivalent
refinement checks.

FDR2 was released in 1996, and has been widely used both within industry and in
academia for verifying systems [4,5,6]. It is also used as a verification backend for several
other tools including: Casper [7] which verifies security protocols; SVA [8] which can ver-
ify simple shared-variable programs; in addition to several industrial tools (e.g. ModelWorks
and ASD [9]).

Recently, FDR3 [10,11] has been released as a complete rewrite of FDR2 featur-
ing a number of improvements including a redesigned user interface, an advanced type-
checker, and improved bisimulation support [12]. Most notably, FDR3 includes a multi-core
refinement-checking engine that, as the experiments in [10] demonstrate, is able to scale
linearly to the number of available cores on a wide range of problems. Further, even on a
single-core FDR3 is, on average, twice as fast as FDR2 [10].

In this paper, we report on an extension to FDR3 that enables it to operate on clusters of
machines when checking specifications in non-divergence models (i.e. the traces and failures
models). This has been extremely successful; as Section 3 explores in more detail, FDR3 was
able to linearly scale to clusters of 1024 cores on not only dedicated supercomputer hardware,
but more notably, also on Amazon’s pay-as-you-go EC2 platform1 (using up to 64, 16-core
servers). Section 3 also reports on an experiment in which, using a 1024-core cluster on EC2,
FDR3 was able to check a problem with 1.2 trillion states that required a total of 6TB of

1See http://aws.amazon.com/ec2/.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

2 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

storage across the cluster. We were surprised that this cost only $70 to run in 5 hours on 64
16-core machines.

We believe that this represents a significant step forward for refinement-checking CSP
and, more generally, for explicit-state model checking. This is primarily because it increases
the maximum system size that can be checked in a reasonable time by several orders of
magnitude.

Outline We begin in Section 1 by outlining the multi-core algorithm of [10] that FDR3 uses
to conduct refinement checking on a single multi-core machine. Section 2 describes the ex-
tensions to the algorithm of [10] to support clusters. It also details various implementation
details that are required in order to successfully scale to clusters of 64 machines and com-
pares to related work. Section 3 reports on the experiments that we have conducted which
demonstrate the ability of FDR3 to scale linearly to the number of available cores across the
cluster.

1. The FDR3 Algorithm

In this section we review how the single shared-memory machine version of FDR3 functions,
focusing on the parallel refinement-checking algorithm. See [10] for more details.

The core function of FDR3 is to decide if Spec is refined by Impl, denoted Spec ⊑ Impl

(all of the other properties FDR can verify, including deadlock-freedom, determinism etc. are
converted into refinement checks). Informally, this requires that every behaviour of Impl is
also a behaviour of Spec. FDR3 has several different notions of behaviour, known as semantic

models, that can be used to check for different properties. In this paper we consider only the
traces model for ease; the algorithm is also applicable to the failures and failures-divergences
model (the latter poses some efficiency challenges which are discussed further in Section 3).
In the traces model, Spec ⊑ Impl is true only when every finite sequence of events that
Impl can perform can also be performed by Spec. Thus, it can be used to check simple safety
properties such as fail never occurs, or mutex locks and unlocks must alternate.

As input, FDR takes a list of CSP processes written in machine-readable CSP, which is
a lazy functional language that has been augmented with process algebraic constructs. FDR
then converts these into labelled transition systems (henceforth LTSs) which it subsequently
operates exclusively on.

In order to decide if Spec ⊑ Impl, FDR firstly normalises the Spec LTS, producing a
deterministic LTS that contains no τ ’s. Normalising large specifications is expensive, how-
ever, generally specifications are relatively small. FDR then checks if the implementation
LTS refines the normalised specification LTS.

1.1. Refinement Checking

Refinement checking proceeds by performing a search over the implementation, checking
that every reachable state is compatible with every state of the specification after the same
trace. A breadth-first search (henceforth BFS) is performed since this produces a minimal
counterexample when the check fails.

FDR3’s parallel refinement checking algorithm is thus a parallel BFS algorithm that is
exploring the graph induced by the product of Spec and Impl. The FDR3 algorithm partitions
the state space based on a hash function on the state pairs. Each worker is assigned a partition
and has local sets to store:

• The set of state pairs in its own partition it has visited (done);
• The set of state pairs to visit on the current level or ply of the BFS (current);
• The set of state pairs to visit on the next level of the BFS (next).

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 3

function WORKER(S, I , w)
donew ← {} ⊲ The set of states that have been visited
currentw ← {} ⊲ States to visit on the current ply
nextw ← {} ⊲ States to visit on the next ply
finishedw ← true ⊲ True when this worker thinks it is finished
if WorkerFor(root(S), root(I)) = w then

currentw ← {(root(S), root(I))}
finishedw ← false

while ∨w∈Workers ¬finishedw do

Wait for other workers to ensure the plys start together
finishedw ← true

for (s, i)← currentw \ donew do

finishedw ← false

donew ← donew ∪ {(s, i)}
for (i′, e) ∈ transitions(I, i) do ⊲ For each implementation transition

if e = τ then

w′ ← WorkerFor(s, i′)
nextw′ ← nextw′ ∪ {(s, i′)}

else

t← transitions(S, s, e)
if t = {} then

Report Trace Error ⊲ S cannot perform the event
else

{s′} ← t ⊲ After normalisation, t must be a singleton
w′ ← WorkerFor(s′, i′)
nextw′ ← nextw′ ∪ {(s′, i′)}

Wait for other workers to finish their ply
currentw ← nextw
nextw ← {}

Figure 1. Each worker in a parallel refinement check executes the above function where: S is the normalised
specification LTS; I is the implementation LTS; root(X) returns the root of the LTS X; transitions(X, s)

returns the set of all (e, s′) such that there is a transition s
e
−−→X s′; transitions(X, s, e) returns the set of

s′ such that s
e
−−→X s′; the set of all workers is given by Workers. WorkerFor(s, i) decides which worker

should check the state pair (s, i).

When a worker visits a transition, it computes the worker who is responsible and then inserts
the new state pair into the appropriate worker’s next set. This algorithm is presented in
Figure 1.

1.2. Implementation

Whilst the abstract algorithm is straightforward, the implementation has to be carefully de-
signed in order to obtain good performance. The main motivation behind the FDR3 imple-
mentation is to try and minimise memory usage since, on a 16-core machine, the parallel
version of FDR3 can visit up to 10 billion states per hour. Given this, and the fact that we
want to allow checks to make use of on-disk storage, B-Trees are a natural choice.

B-Trees The FDR3 implementation of B-Trees is relatively standard, but has been opti-
mised to allow for efficient insertion of blocks of sorted data. The B-Tree uses a three-level
caching system, as described below.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

4 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

Level 1 This consists entirely of uncompressed B-Tree nodes and is normally 16MB, thus
storing a few hundred B-Tree nodes.

Level 2 This is an in-memory cache of compressed B-Tree blocks. The blocks are com-
pressed using a combination of two algorithms, the first of which takes advantage of
the fact that B-Trees contain sorted data, and the second is a standard compression
algorithm. This cache will gradually fill the entirety of main memory.

Level 3 If FDR3 is configured to use on-disk storage, this consists of compressed B-Tree
blocks that are stored on-disk and have been evicted from the Level 2 cache.

The use of B-Trees also influences our decision to use a strict BFS, rather than a non-
strict BFS (where workers are allowed to get ahead of other workers), or some other search
strategy. By using BFS it makes sense for each worker w to traverse over currentw in sorted
order, meaning that all of the inserts into donew are in sorted order. This minimises the
number of cache misses (i.e. minimises the number of accesses to B-Tree nodes not in the
Level 1 cache).

Thread-Safety In order to implement the algorithm of Figure 1, we need to consider how to
make it thread safe. All access to the done and current B-Trees is restricted to the worker
who owns those B-Trees, meaning that there are no threading issues to consider. The next

B-Trees are more problematic: workers can generate state pairs for other workers. Thus, we
need to provide some way of accessing the next B-Trees of other workers in a thread-safe
manner. Given the volume of data that needs to be put into next (which can be an order of
magnitude greater than the volume put into done), locking the tree is undesirable. One option
would be to use fine-grained locking on the B-Tree, however this is difficult to implement
efficiently.

Instead of using complex locks, FDR uses a system of buffers. Each worker w has a set
of buffers, one for each other worker, and a list of buffers it has received from other workers
that require insertion into this worker’s next. When a buffer of worker w for worker w′ 6= w

fills up, it immediately passes it to the target worker. Workers periodically check the stack of
pending buffers to be flushed, and when a certain size is exceeded, they perform a bulk insert
into next by performing a n-way merge of all of the pending buffers to produce a single
sorted buffer. This intermediate sorting also makes the actual inserts into the B-Tree more
efficient.

Performance In [10] various experiments were performed that demonstrated that FDR3 was
capable of linearly scaling to 16 cores on a single shared-memory machine on a wide variety
of problems. Since then, we have performed additional experiments on a larger machine and
have verified that FDR3 scales linearly on a single shared-memory machine with 40 cores.
[10] also demonstrated that FDR3 is capable of using significant quantities on-disk storage
to supplement memory, thus allowing FDR to check far larger problems than other similar
tools.

2. Extending FDR3 to The Cloud

This section describes how the parallel refinement checker inside FDR3 has been extended
in order to execute on clusters of machines. In Section 2.2 we also describe the theoretical
network bandwidth requirements of our algorithm, whilst Section 2.3 discusses related work.

In this section each physical machine in the cluster is known as a compute node or, more
simply, a node.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 5

2.1. Implementation

The abstract algorithm that the cluster implementation uses is exactly the same as the par-
allel algorithm presented in Figure 1. However, it differs significantly in the implementation
details, as described below.

Cluster Structure Message Passing Interface (MPI) is the most commonly used standard for
writing high-performance programs that run on supercomputers, and therefore it was a natural
choice to implement the cluster algorithm of FDR3. When using MPI, the first decision that
has to be made is how many FDR3 processes should be run on each compute node. As in the
single-machine algorithm, one worker (i.e. a thread executing the algorithm of Figure 1) will
run on each core on each compute node. Hence, there are two obvious choices:

Single Threaded Each FDR3 process contains only one worker and there is thus one FDR3
process per core (e.g. on a 16 core node, there would be 16 single-threaded FDR3
processes running).

Multi Threaded Each FDR3 process contains one worker for each core on the compute node
and thus only one FDR3 process runs on each physical machine (e.g. on a 16 core node,
there would be one multi-threaded FDR3 process running containing 16 workers).

The single-threaded model is likely to be less efficient; no matter how well written the
MPI library is, it is unlikely to be able to match the performance of the custom multi-threaded
FDR3 version. This is because the multi-threaded version can take advantage of shared mem-
ory optimisations that are difficult to port to a pure message-passing system. Hence, FDR3
uses the multi-threaded model and therefore a single FDR3 process runs on each compute
node.

Compute Node Structure As before, each worker uses B-Trees to store the three sets of
states and, again, uses a system of buffers to transfer state pairs between different workers.
As before, each worker has a buffer for each other local worker, and also one buffer for
each remote compute node. In other words, writes for multiple remote workers on the same
compute node are coalesced into a single outbound buffer. This is to avoid creating too many
buffers as the size of the cluster increases. If each worker were to have 1024 buffers (e.g. on
a 64 node cluster of 16-core machines), this would begin to require a significant quantity of
memory and, in our experiments, actually slightly reduced performance.

More precisely, when a worker visits a new state pair, as before, it uses an appropriately
defined WorkerFor function (which is discussed further below) to decide which worker to
send it to. If the destination worker is another worker w′ on the same compute node then it
is placed directly in a buffer for w′, otherwise it is placed into the buffer for NodeOf(w′),
where NodeOf returns the compute node on which worker w′ is located. When a buffer for
another local worker fills up, as in the single-machine algorithm, the buffer is handed directly
to the target worker, as per the single machine algorithm of Section 1.2. When a remote buffer
is filled up, the worker passes it to a special thread called the Controller, which is discussed
further below. Each worker also periodically checks for incoming buffers and, exactly as
before, when a certain threshold is exceeded, performs an n-way merge and inserts them into
the local next tree.

In order to minimise the network bandwidth required, the blocks of state pairs for re-
mote nodes (only) are compressed using a standard compression algorithm before being sent.
This actually improves performance even when sufficient network bandwidth is available.
We speculate that this may be because less data has to be copied around the MPI network
implementation.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

6 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

Worker 0

Processor 0

Worker 1

Controller 0

Worker 2

Processor 1

Worker 3

Controller 1

Node 0 Node 1

Figure 2. The architecture of the FDR3 cluster implementation, demonstrating the structure when there are
two compute nodes, each with two workers and one processor. Solid lines indicate where buffers of state pairs
are transferred internally within the nodes, whilst dashed lines indicate where buffers are sent via MPI.

Each node also runs one controller thread which is responsible for performing all com-
munication with remote nodes2. The controller periodically checks for any outgoing blocks
that have been sent to it by local workers; whenever the controller finds blocks it immediately
sends them.

The controller is also responsible for receiving remote blocks generated by remote com-
pute nodes. Since these blocks consist of state pairs for multiple local workers, the buffers
must be divided up according to the destination worker. Further, the block of state pairs must
first be uncompressed. Since these are computationally expensive operations that might block
the controller (which has to be capable of moving 5 Gigabits of data per second, as discussed
in Section 2.2) these operations are actually offloaded to a separate thread, known as the Pro-

cessor. The number of processor threads is proportional to the number of cores on the com-
pute node. Each processor has a state pair buffer for each local worker. The processors share
a queue of state pair blocks that the controller has received and need to be processed. When a
processor retrieves a block from this queue, it uncompresses the block and then inserts each
state pair into the appropriate local buffer using its own buffers (sending the buffers to local
workers as they fill up).

The controller also implements the global synchronisations — i.e. the waits at the start
and end of the main while loop of Figure 1. The first of these global synchronisations uses
a MPI barrier (i.e. MPI Barrier), whilst the second uses a call to MPI Reduce which, in
addition to allowing the nodes to exchange information about how many states they have
visited etc, also causes a global synchronisation.

The amount of polling that the controller does slightly affect performance. When tuning
the algorithm, we found that polling around 1000 times a second achieved optimal perfor-
mance, but the implementation was not sensitive to the exact polling frequency provided the
polling was done at least 50 times a second.

This design is summarised in Figure 2 which shows how the different components will
interact on a small two compute node cluster.

Note that each compute node is over-subscribed, in the sense that there are more threads

2By using a single thread to perform all MPI related operations, we are able to use the single-threaded MPI
implementation. We did experiment with an alternative and simpler design that required a multi-threaded MPI
implementation, where workers sent blocks directly to remote nodes, rather than via the controller, and the
processors directly received blocks from remote nodes. However, the performance was relatively poor on large
machines with more than 16 cores. In particular, a large amount of time was spent inside internal MPI locks,
dramatically reducing the speed-ups observed. This was particularly noticeable when using Amazon’s EC2
platform.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 7

running than there are cores (there are at least n+2 threads, where n is the number of cores).
Whilst this might be expected to reduce performance, our experiments revealed that reducing
the number of workers to ensure that there are precisely the same number of threads as cores
actually decreased performance. We believe this is because although the n worker threads are
busy essentially all of the time, the m extra threads are not. Thus, if FDR were to instead use
n−m workers (i.e. to ensure that there is no over-subscription), this will actually leave some
of the cores unused some of the time.

Work Distribution As in the single machine algorithm, the cluster algorithm used a hash
function to assign work to different workers. Thus, WorkerFor(s, i) was defined as
Hash(s, i) mod WorkerCount, where Hash was a standard hash function. When we be-
gan to experiment with larger clusters consisting of 128 or more cores we noticed, for the
first time, slight imbalances emerging in the distribution of work to different workers. In par-
ticular, on a particular ply we observed the difference between the earliest and latest worker
finishing to be as much as 10% of the runtime of that level of the search.

In order to combat this FDR performs additional mixing on the hash function. In
particular, the hash value is grouped into a larger number of buckets, and then for
each bucket a random worker is assigned to work on it. Thus, WorkerFor(s, i) =̂
WorkerForBucket[Hash(s, i) mod (C ×WorkerCount)] where C is an arbitrary con-
stant, and WorkerForBucket is an array of length C × WorkerCount that returns the
identifier of the worker that items in that bucket should be sent to. The WorkerForBucket

array is generated by randomly shuffling a vector consisting of C copies of each worker’s
identifier. Each worker is assigned to a particular node, meaning that NodeOf can be im-
plemented via a simple lookup. With C set to 20, this reduced the imbalance to a fraction
of a percent, and also improved the speed of the single machine algorithm when running on
machines with many (16 or more) cores.

This algorithm also generalises to non-homogeneous clusters (i.e. clusters where the
machines are not equally powerful) by simply assigning the number of buckets proportional
to the speed of the machine. FDR calculates the speed of the machine by performing a brief
benchmark before starting the check. However, this process can lead to inaccurate results, due
to random fluctuations in the speed of the machine. Since even a small imbalance in the work
distribution can dramatically slowdown the check, the use of non-homogeneous clusters it
not recommended.

2.2. Bandwidth Requirements

The most obvious potential issue with scaling the algorithm outlined in the previous section
is the amount of network bandwidth required to send/receive the state pairs. In particular, in
a cluster consisting of n homogeneous compute nodes, each visiting T transitions per second
(i.e. generating T state pairs per second), with a state pair size of B bytes, each node will send
and receive (on average) n−1

n
× T × B bytes per second. In fact, T is somewhat dependent

on B, since larger state pairs inevitably reduce T since FDR has to do more work per state.
On a 16 core server, we have observed FDR3 visiting up to 30 million transition per

second with each state pair costing 16 bytes to store. This would require 3.6 Gigabits per
second to be sent and received on each compute node. As the state pairs are compressed, this
tends to reduce to 2 gigabits per second in each direction.

Clearly, a commodity 1-gigabit connection is not sufficient to sustain such a volume
of messages. However, a 10-gigabit ethernet connection (which are becoming increasingly
common) is not only sufficient, but leaves more than enough for transient increases in rate
and for future increases in processor speed or, more likely, the number of cores per compute
node. On supercomputers, InfiniBand interconnects are are extremely common and provide
in the range of 20 to 40-gigabit connections, which is again more than sufficient.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

8 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

The above suggests that the individual network connections are sufficient, and thus it
remains to consider the total volume of data that is flowing through the network. This could
be problematic: in a 64 node cluster, if each machine is sending (and receiving) 2 gigabits
per second, this requires the network to be able to deal with a total of 28 Gigabytes per
second. Thankfully, many modern data centres use full-bisection networks, which allow each
compute node to send and receive at the maximum rate no matter what else is occurring on
the network. One common network architecture is a fat-tree arrangement where the network
is arranged in a tree, but the links increase in bandwidth going up the tree in such a way to
ensure that all nodes have sufficient bandwidth.

Thus, in practice, whilst FDR3 will make very heavy use of the network, recent devel-
opments in network design mean that FDR3 will not saturate the network. As the number of
cores increases per node, this may change, but equally network bandwidth is also likely to
increase (particularly on InfiniBand-based supercomputers which run simulations that are far
more bandwidth intensive).

2.3. Related Techniques

The authors of [13] parallelised the FDR2 refinement checker for cluster systems that also
used MPI. The algorithm they used was similar to our algorithm in that state pairs were
partitioned amongst the workers and that B-Trees were used for storage. The main difference
comes from the communication of next: in their approach this was deferred until the end of
each round where a bulk exchange was done, whereas FDR3 continuously exchanges data
throughout each round.

There are various trade-offs between the two approaches. Firstly, the approach of [13]
introduces a large end-of-round pause which will reduce the overall speed-up that the algo-
rithm achieves. Further, it will use more memory, since each compute node has to store all of
the outgoing transitions that it finds on a given iteration, wheres under our approach we only
buffer a relatively small number. On the other hand, because duplicates are eliminated before
sending, the approach of [13] would require less bandwidth. However, since it requires the
bandwidth to be as high as possible to reduce the overall pause, this is not as beneficial as
might be hoped.

Assuming sufficient bandwidth, the time required by the approach of this paper is pro-
portional to the number of new states generated on each ply. The time required by the ap-
proach of [13] requires time proportional to the number of new states generated on each ply
(for generating the states), plus the number of unique states on each ply (for sending them).
Clearly, unless there is an exceptionally large number of duplicates (which is not at all com-
mon), the approach of this paper will use significantly less time.

As a result of the above, we believe that the approach outlined in this paper has better
scalability than that of [13], providing sufficient network bandwidth is available. As discussed
in the previous section, this does not appear to be a problem in practice.

Several other model checkers also have support for utilising clusters of machines.
LTSmin [14] allows reachability checking using clusters of machines, and achieves a near-
linear speedup. DiVinE [15] implements a number of different distributed algorithms [16,17]
for model-checking LTL specifications. Due to the complexity of model-checking LTL
(which typically requires cycles to be found which is known to be difficult to achieve in
parallel), these typically achieve reasonable, but nonetheless, sublinear speedups.

3. Experiments

In order to verify how the cluster version performed in practice, we ran a series of experi-
ments on two different cluster systems. These experiments consisted of running various re-

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 9

finement checks on clusters of 1, 2, 4, . . . , 64 machines, thus allowing us to observe the scal-
ing performance of the algorithm. In the case of some files we were unable to run the check
on smaller numbers of machines because the smaller clusters did not have sufficient memory
to complete the check; such checks are indicated using †. Table 1 details the various refine-
ment checks, which are described in more detail below, that we attempted; they consist of a
variety of checks with between 1.5 billion and 1.2 trillion states. All input files are available
from the first author’s webpage.

CSP Files

bakery.n.m is a CSP file generated by the SVA shared variable front end for FDR [8]. The
shared-variable code for this, the original Lamport version of this mutual exclusion
algorithm, can be found in Chapter 18 of [3]. The two parameters are the number of
separate threads (between which mutual exclusion is arbitrated), and the maximum
ticket value that is modelled. Each thread owns one shared and one local variable that
ranges over the ticket range {0..m}, a shared boolean and a counter that ranges over
{0..n + 1}. Thus altogether there are n shared and n local ticket variables, n shared
booleans and n local counters. Like all standard applications of SVA, this one makes
significant use of FDR’s state compressions applied to sub-processes, and we believe
that if bakery.6.30 could be run without this compression it would have nearly 1020

states. We used bakery.6.30 as our trillion state check because we felt it more realistic
than puzzles and because as the second parameter varies we found it possible to predict
the overall state-space size accurately.

bully.n is the corrected version of the Bully Algorithm for leadership election that is de-
scribed in Chapter 14 of [3]. It uses the tock-CSP style of writing timed processes. The
parameter n is the number of nodes considered.

cuberoll.0 is a puzzle based on rolling 8 unit cubes within a 3× 3 square.
ddb.n is the distributed database example described in Chapter 15 of [2], in a check that

considers the stabilisation of ring of n processes. This algorithm provides a way of
ensuring that a group of nodes each updating a variable in a lock-free way can ensure
consistency in their views of it.

knightstour.n.m is a simple coding of a system which explores all possible knight’s tours
of an n×m board, not using Warnsdorff’s algorithm as described in Chapter 20 of [3].

knightex.m.n (both odd numbers) is a puzzle on an n×m board in which the centre square
is empty, and the rest divided into equal-sized white and red regions. The objective of
the puzzle is to swap the white and red pegs. Given K = n×m, it has K ×

(
K−1

(K−1)/2

)

states.
solitaire.0 is the standard FDR benchmark of a CSP coding of the peg solitaire puzzle

as described in Chapter 15 of [2]. This has 187M states and is too small to include
in our experiments, but the 1024-core cluster completed it in 2.2 seconds. We note
that when [2] was published this example was considered too large for FDR. For these
experiments we instead used larger versions, where solitaire.n has a group of 3
extra pegs added to n of the four legs of the cross (giving 33 + n× 3 slots in all).

Cluster Systems The first cluster system we experimented with was Arcus, which is 1472
core supercomputer at the University of Oxford. It consists of 92 compute nodes, each of
which has two 8-core 2GHz Intel Xeons and 60GB of RAM. The compute nodes are con-
nected using a 40Gbit/s InfiniBand interconnect, arranged in a fat-tree architecture. On Ar-

cus FDR3 used MVAPICH 1.8 as the MPI implementation. Detailed experimental results are
given in Figure 4.

More interestingly, we also utilised commodity cloud computing hardware by renting
time on Amazon’s Elastic Compute Cloud (EC2). This allows you to rent machines of vary-

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

10 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

Input File
Time by Cluster Size (s)

1 2 4 8 16 32 64
bakery.6.8 10069 5919 2940 1378 675 356 186
bakery.6.30 † † † † † 37701 20680

bully.8 4183 2502 1186 532 249 113 57
cuberoll.0 1439 870 425 206 98 49 25

ddb.10 † 29389 15329 6711 2801 1337 562
knightex.3.11 7259 4622 2257 1059 489 229 112
knightex.5.7 † † 15987 7195 2954 1453 586

knightstour.5.9 † † 12165 5926 2201 1091 441
solitaire.1 568 356 174 99 52 21 12
solitaire.2 5383 3726 1982 920 439 190 90

(a) Absolute amount of time taken by each refinement check.

Input File
Speedup Factor by Cluster Size

1 2 4 8 16 32 64
bakery.6.8 — 1.70 2.01 2.13 2.04 1.09 1.91
bully.8 — 1.67 2.11 2.23 2.14 2.19 1.99

cuberoll.0 — 1.65 2.05 2.06 2.10 2.02 1.92
ddb.10 † — 1.92 2.28 2.40 2.10 2.38

knightex.3.11 — 1.57 2.05 2.13 2.17 2.14 2.04
knightex.5.7 † † — 2.22 2.44 2.03 2.48

knightstour.5.9 † † — 2.05 2.69 2.02 2.48
solitaire.1 — 1.59 2.05 1.76 1.89 2.48 1.80
solitaire.2 — 1.44 1.88 2.16 2.09 2.31 2.11

Average — 1.61 2.01 2.11 2.22 2.13 2.09
Average vs 1 Node — 1.61 3.23 6.82 15.12 32.23 67.43

(b) Speedup figures for the experiments run on EC2. In the above grid, except for the
average row, an entry in a column corresponding to n compute nodes refers to how much
faster FDR3 was with n nodes than with n

2
nodes (i.e. a value of 2 would indicate linear

scaling, > 2 indicates superlinear scaling, and < 2 indicates sublinear scaling).

1 2 4 8 16 32 64
106

107

108

Cluster Size

E
xp

lo
ra

ti
on

R
at

e
(S

ta
te

/s
)

bully.8
ddb.10

cuberoll.0
knightex.3.11

(c) Scaling Performance of FDR3 on selected problems (note the log-
log plot).

Figure 3. Results for the experiments run on EC2.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 11

Table 1. The different refinement checks used in the experiments.

Input File States (109) Transitions (109) Memory (GB)

bakery.6.8 21.3 119.1 102

bakery.6.30 1174.7 6585.0 6100

bully.8 5.9 66.9 33

cuberoll.0 7.5 20.1 35

ddb.10 51.1 352.0 406

knightex.3.11 19.8 67.3 154

knightex.5.7 81.2 355 632

knightstour.5.9 123.9 207.3 574

solitaire.1 1.6 14.0 7

solitaire.2 11.6 113.8 50

ing size by the hour and on-demand. On EC2 we utilised clusters of up to 64 r3.8xlarge

machines, each of which had two 8-core 2.6GHz Intel Xeons and 240GB of RAM. The ma-
chines are connected using a 10-gigabit network and were configured in a cluster placement

group, which Amazon claims ensures low-jitter full-bisection network bandwidth. On EC2
FDR3 used MPICH 3.1 as the MPI implementation. Detailed experimental results are given
in Figure 3.

Scaling Performance As shown in Figure 3b, on EC2 FDR3 achieves an average speedup
of 67 over a single server on a 64 machine cluster, which equates to a speedup of over 1000
over the sequential version. Surprisingly, this is a super-linear speedup. We believe that this
is because the size of the B-Trees decreases as the cluster size increases, meaning that the
Level 1 cache of B-Tree blocks is more likely to be useful (i.e. the hit rate increases).

Figure 3b and Figure 4b also indicate that the cluster version imposes a small overhead
since the average speedup from one to two nodes is 1.61. Some of this slow down will be
because the state pairs blocks have to be compressed before being sent to remote nodes, but
the source of the remainder is unclear to us. Profiling indicates that using MPI causes memory
bandwidth (i.e. the amount of data transferred between the RAM and the processor’s cache) to
increase, and since FDR3 is already memory-bound, this appears to slowdown FDR3 slightly.
Thanks to the superlinear scaling observed above, this effect is cancelled out with clusters of
32 compute nodes or more.

Some files also appear to scale better than others. For example, Figure 3a and Figure 4a
indicate that whilst knightex.3.11 and bully.8 achieved superlinear scaling (on EC2, 65
and 73 respectively), bakery.6.8 and solitaire.2 achieved only a sublinear scaling (on
EC2, 54 and 60 respectively). This is because of the strucutre of the problem; generally,
problems that have a high number of states per ply will scale better because there are fewer
global barrier synchronisations required. This effect is also observed when scaling FDR3 on
a single machine, as shown in the experiments of [10].

Other than the fact that each compute node on EC2 is faster than those on Arcus (since
Arcus dates from 2010), there is little difference in speed between the two platforms. This is
an encouraging sign given that access to specialised supercomputers such as Arcus is often
hard to obtain, whereas access to EC2 is available to anyone.

1012 States and Beyond In order to probe the capabilities of the cluster version we ran a
refinement check on a large version of the bakery algorithm. This check had 1.2 trillion states
over 1,200 plys, 6 trillion transitions, and required 6TB of storage across the cluster. This
file also uses compression, whereby a LTS is converted into a smaller equivalent LTS (as
many large CSP scripts do). Thus, the check of 1012 compressed states actually corresponds
to checking around 1020 uncompressed states.

This check could not be executed on Arcus, since it had insufficient memory, but it could

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

12 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

Input File
Time by Cluster Size (s)

1 2 4 8 16 32 64
bakery.6.8 † 6974 3246 1717 875 454 246
bully.8 6629 3181 1543 836 402 181 90

cuberoll.0 2160 1081 544 279 161 70 40
ddb.10 † † † 9578 3990 1672 766

knightex.3.11 † † 2918 1419 677 314 173
knightex.5.7 † † † † 4169 1692 773

knightstour.5.9 † † † † 3315 1285 569
solitaire.1 707 424 211 115 61 34 20
solitaire.2 † 4610 2506 1140 527 262 149

(a) Absolute amount of time taken by each refinement check.

Input File
Cluster Size

1 2 4 8 16 32 64
bakery.6.8 † — 2.15 1.89 1.96 1.93 1.85
bully.8 — 2.08 2.06 1.84 2.08 2.23 2.00

cuberoll.0 — 2.00 1.99 1.95 1.73 2.32 1.75
ddb.10 † † † — 2.40 2.39 2.18

knightex.3.11 † † — 2.06 2.10 2.16 1.81
knightex.5.7 † † † † — 2.46 2.19

knightstour.5.9 † † † † — 2.58 2.26
solitaire.1 — 1.67 2.01 1.83 1.89 1.79 1.68
solitaire.2 † — 1.84 2.20 2.16 2.01 1.76

Average — 1.92 2.01 1.96 2.05 2.21 1.94
Average vs 1 Node — 1.92 3.85 7.55 15.45 34.10 66.19

(b) Speedup figures for the experiments run on Arcus. The entries in the above grid are
as per Figure 3b.

1 2 4 8 16 32 64

106

107

108

Cluster Size

E
xp

lo
ra

ti
on

R
at

e
(S

ta
te

/s
)

bully.8
cuberoll.0

ddb.10
knightex.3.11

(c) Scaling Performance of FDR3 on selected problems (note the log-
log plot).

Figure 4. Results for the experiments run on Arcus.

be on EC2 on both a 32 and 64-node cluster, taking 10.5 hours and 5.7 hours, respectively.
The sublinear speedup is likely to be due to the fact that this problem has a very large num-
ber of plys (around 1300), meaning that a large number of the plys are relatively small. As
discussed above, the cluster version is more efficient on problems that have a smaller number
of larger plys.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 13

Table 2. The memory usage of FDR3 on EC2 on a selection of problems.

Input File
Memory Usage by Cluster Size (GB)

1 2 4 8 16 32 64

bakery.6.8 80 83 87 91 96 101 108

bully.8 31 31 33 34 36 36 41

cuberoll.0 29 30 31 33 35 39 42

solitaire.2 42 43 45 47 49 53 57

Network Bandwidth During the experiments on EC2, the utilised network bandwidth was
also monitored (unfortunately, the relevant data was not accessible on Arcus). The network
bandwidth was highly problem dependent (since it depends on the average out-degree of a
state pair), and the highest rates were observed when verifying solitaire.1, with each node
sending/receiving on average around 2.4 Gbit/s, with occasional spikes of up to 6 Gbit/s (near
the end of the plys). This is only a little over the estimates of Section 2.2, possibly because
the MPI implementation has to send additional data. Note that since network bandwidth was
not an issue, no attempt was made to optimise FDR3’s network usage.

Memory Usage Table 2 shows how the memory usage varies as the cluster size increases.
This table clearly shows that FDR3 is consuming up to 20% more memory as the cluster size
increases. There are two primary reasons for this. Firstly, each compute node has its own
local cache and thus, as the size of the cluster increases, the total amount of storage used
by the cache increases. The second reason is more subtle. As explained in Section 1, FDR3
compresses B-Tree blocks by exploiting the fact that the keys are sorted, and thus only stores
the differences between the keys. However, the hash function that is used does not respect this
ordering, meaning that consecutive keys may be assigned to different B-Trees, thus reducing
the potential for compression.

Conclusions

In this paper we have presented a cluster version of the FDR3 refinement checker. We have
demonstrated that it is able to linearly scale up to at least clusters of 64 16-core servers on
a wide variety of traces and failures refinement checks, achieving an overall speed-up of
over 1000 versus the sequential version. This represents an enormous increase in the size
of problem that can be realistically checked by FDR in a reasonable period of time. This is
exemplified by the fact that we were able to successfully complete a refinement check with
1012 states, which is at least an order of magnitude more than the single machine version of
FDR3 could manage, and at least three orders of magnitude more than FDR2 could manage
in a reasonable period of time.

The fact that FDR3 is capable of operating on commodity cloud computing services is
particularly interesting. Since Amazon requires nothing more than a credit card to register, it
is possible for anyone to rent a cluster of 64 powerful servers and then use FDR3 to check
extremely large problems. Further, EC2 is relatively inexpensive: in total including some
development time and and the time required to run all of the experiments, we spent only $400
on EC2 at an average cost of $0.26 per server per hour3.

As noted in Section 2.3, whilst there have been attempts to scale other model checkers
to work efficiently on clusters, the use of temporal logics has hindered their ability to take
full advantage. This is one benefit of FDR: as the traces and failures models do not require

3This is largely thanks to Amazon’s spot pricing whereby they essentially auction spare compute capacity.
The spot price can be variable, but was extremely stable at $0.26 per hour on the type of server we were
interested in.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

14 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

cycles to be found, and can check a very large and useful class of specifications, FDR is
able to use a vastly more efficient parallel implementation. However, it should be noted that
parallelising checks in the failures-divergences model is likely to be challenging since check-
ing for divergences does require cycles to be found. Efficiently parallelising checks in the
failures-divergences model is the subject of continuing research.

Future Work Presently, we statically partition the graph based on a hash function. Whilst
this produces (essentially) perfect balancing, it does cause an increase in memory usage, as
discussed in Section 3. We intend to attempt to eliminate this by using alternative methods
of assigning work that attempt to group similar keys together. This may require us to investi-
gate dynamic partitions, which would additionally also allow FDR3 to cope with nodes that
started to slow down (relative to another node) for some unknown reason (perhaps due to a
malfunction, or otherwise).

As discussed in Section 2.2, FDR3 requires relatively significant quantities of bandwidth
in order to exchange states. Whilst this does not pose any challenge to hardware at the mo-
ment, if the number of cores on a given server increases faster than the bandwidth available,
then this may become a problem. Therefore, we would like to investigate if it is possible to
assign state pairs to workers in such a way to increase the likelihood that successor states
will also be assigned to the same worker. This would reduce the total amount of network
bandwidth required.

As demonstrated in Section 3, there appears to be a slowdown with simply enabling
the MPI based solution. It may be possible to reduce, or even eliminate this by moving to a
custom non-MPI based implementation for the exchange of node pairs.

Availability

FDR3 is available for Linux and Mac OS X from https://www.cs.ox.ac.uk/projects/

fdr/. The cluster version is included in the above release only for Linux. FDR3 is free for
academic and research purposes whilst commercial licensing is available.

Acknowledgements

We are grateful to Philip Armstrong and Gavin Lowe for many interesting discussions con-
cerning this work. We would also like to thank the anonymous reviewers for many helpful
comments. The authors would like to acknowledge the use of the Advanced Research Com-
puting (ARC) in carrying out this work. Research into FDR3 has been partially sponsored by
DARPA under agreement number FA8750-12-2-0247.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[2] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
[3] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[4] Jonathan Lawrence. Practical Application of CSP and FDR to Software Design. In Communicating

Sequential Processes. The First 25 Years, volume 3525 of LNCS. 2005.
[5] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: strategy, tool support and industrial

application. Science of Computer Programming, 40(1), 2001.
[6] Clemens Fischer and Heike Wehrheim. Model-Checking CSP-OZ Specifications with FDR. In IFM’99.

Springer, 1999.
[7] Gavin Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of Computer Security,

6(1-2), 1998.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud 15

[8] A. W. Roscoe and David Hopkins. SVA, a Tool for Analysing Shared-Variable Programs. In Proceedings

of AVoCS 2007, 2007.
[9] Philippa J Hopcroft and Guy H Broadfoot. Combining the box structure development method and CSP

for software development. Electronic Notes in Theoretical Computer Science, 128(6):127–144, 2005.
[10] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe. FDR3 — A Mod-

ern Model Checker for CSP. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 8413 of Lecture Notes in Computer Science, pages 187–201, 2014.

[11] University of Oxford. Failures-Divergence Refinement—FDR 3 User Manual, 2014. https://www.cs.
ox.ac.uk/projects/fdr/manual/.

[12] Alexandre Boulgakov, Thomas Gibson-Robinson, and A.W. Roscoe. Computing Maximal Bisimulations.
In ICFEM, 2014.

[13] Michael Goldsmith and Jeremy Martin. The parallelisation of FDR. In Proceedings of the Workshop on

Parallel and Distributed Model Checking, 2002.
[14] Alfons Laarman, Jaco van de Pol, and Michael Weber. Multi-Core LTSmin: Marrying Modularity and

Scalability. In NASA Formal Methods, volume 6617 of LNCS. 2011.
[15] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Milan Lenčo, Petr Ročkai, Vladimír Štill,

and Jiří Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++ Programs. In
CAV, volume 8044 of LNCS, 2013.

[16] Jiri Barnat, Lubos Brim, and Pavel Simecek. Cluster-Based I/O-Efficient LTL Model Checking. In ASE,
pages 635–639. IEEE Computer Society, 2009.

[17] Kees Verstoep, Henri E. Bal, Jiri Barnat, and Lubos Brim. Efficient Large-Scale Model Checking. In
IPDPS, pages 1–12. IEEE, 2009.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

16 T. Gibson-Robinson and A.W. Roscoe / FDR into The Cloud

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

