
Communicating Process Architectures 2014 79

P.H. Welch et al. (Eds.)

Open Channel Publishing Ltd., 2014

© 2014 The authors and Open Channel Publishing Ltd. All rights reserved.

Process Discovery in Highly Parallel

Distributed Systems

Jon KERRIDGE

School of Computing, Edinburgh Napier University, UK

j.kerridge@napier.ac.uk

Abstract. In distributed data processing systems it may happen that data arrives for

processing for which the appropriate algorithm is not available on the specific node

of the distributed system. It is however known that the required algorithm is

available somewhere within the distributed system. A mechanism for achieving the

migration of algorithms within such a system is described. An implementation of

the mechanism is presented that utilizes the concept of mobility of processes over

TCP/IP networks.

Keywords. process discovery, distributed systems, mobile processes

Introduction

Increasingly, data is being held in systems that utilise some form of Grid or Cloud based

storage facility. Such data tends to be held in structures that are either self-describing or are

described by an external schema defined using XML or similar technology. By necessity,

such data structures will change over time and a major problem is ensuring that all parts of

the distributed system that both store and process such data are aware of such structural

changes. Rather than trying to ensure that all processing nodes are informed about such

structures this paper proposes a system whereby if data arrives at a node for processing that

is not aware of the specific data structure used a search is instigated for the required

algorithm, which is assumed to exist somewhere within the system.

The described method assumes that the required algorithm can be deduced from the

data structure based on the name of the data type that is being processed. For example, in

an object oriented system we can use the name of the class that defines the data type and in

an XML based system we can use the schema name. The problem this paper addresses

arises especially from minor revisions of the data structure such that a node may have

version 1.1.8 of the algorithm but not a more recent version, say 1.2.3, because it has yet to

process such data structure examples. The challenge then is to obtain the required

algorithm and install it dynamically into the processing node so that the data can be

processed.

In this paper we shall assume a highly parallel infrastructure, which in this case is

based upon JCSP [1] and the net2 communication infrastructure [2]. Mobile agents [3] will

be injected into the distributed system with the goal of finding a node that has the required

algorithm that processes a specific data structure. It is assumed that the algorithm is

encapsulated as a JCSP process definition. Once the mobile agent has found a node with

the required process definition, it will take a copy of it back to the originating node, which

will cause the dynamic inclusion of the process into its processing infrastructure.

Thereafter, that node will be able to process data of that specific structure. The goal of the

architecture is to create a system in which the computation is moved to the data rather than

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

80 J. Kerridge / Process Discovery in Highly Parallel Systems

the other way round. A situation typically found in so-called ‘Big Data’ applications.

This approach is typically applicable to systems involving the federation of similar

data sets residing in different repositories. Each repository contains data stored in a specific

format but in order to integrate data with another node the specific algorithm required to

access the data may also need to be transferred. Rather than copying all the required

algorithms to all the repositories the access algorithms can be obtained on an as-needed

basis. The same situation can occur in distributed systems where they are all running the

same basic software but there are many different versions or revisions of the data structures

held on the various sites. Yet again it is easier to obtain the required algorithm on an as-

needed basis than try to ensure that all sites have all got a copy of every data structure

revision.

In Section 1 we shall review previous and related work and thereby demonstrate that

the approach taken in this paper is novel. Section 2 shows how mobile agents are defined

and implemented. Section 3 presents the system architecture that is used to describe the

fundamental operation of the method. Section 4 describes the means by which a mobile

agent interacts with a node during all stages of its life-cycle. Section 5 draws some

conclusions and identifies limitations of the implementation.

1. Background and Related Work

Much of the related background has been undertaken in the context of cloud or grid based

systems such as [4, 5, 6], where the emphasis is on trying to extract information from large

data stores. In the main these applications tend to assume that definition of the data

structure or the data structure is stored within the data as happens in XML based systems. A

more detailed example explores the problems associated with large genomic databases [7]

as used by museums and the like to records taxonomic data. The specific problem here is

that as knowledge increases about a specific genome, the associated data changes, even

though the basic structure remains the same. Thus there is a general trend of revising the

associated processing which some sites may never need. Hence there is a need to be able to

propagate changes on an as-needed basis. It is this aspect of the required technology that

forms the basis of the architecture presented in this paper.

2. Definition of Mobile Agents

A mobile agent is simply a unit of executable code that can be communicated over a

network to one or more nodes. It can connect itself to the infrastructure of a node to

interrogate the node to determine whether it has the required algorithm. If the node has the

required algorithm process a copy is put into the mobile agent, which returns to the

originating node and connects to its infrastructure thereby causing the node to install the

new algorithm as a parallel process. If a node does not have the required algorithm process

the mobile agent causes itself to be transferred to another node until it finds the required

algorithm process. In the case of JCSP based systems the infrastructure is represented as a

set of channels to which the agent can connect and thereby interact with its host node [8].

Listing 1 shows the definition of the interface used to define a Mobile Agent. The

definition inherits the interface CSProcess, which is the fundamental interface JCSP uses to

define a process. It also inherits the Serializable interface in order that a MobileAgent

object can be transferred across a network.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 81

interface MobileAgent extends CSProcess, Serializable {

 abstract connect(parameter)

 abstract disconnect()

}

Listing 1. Mobile Agent Interface Definition.

The method connect is typically passed a list of channel ends as its parameter. When a

mobile agent arrives at a node, the node will call the connect method. The channel ends

will relate to internal channels available at the node which are used to communicate with

the mobile agent. In most cases this will comprise two channel ends; one to be used as an

input to and the other, as an output channel from the mobile agent. The node process will

access the corresponding ends of these channels. Such channel ends are specific to a

particular node and thus cannot be transferred from one node to another. The parameter

list may also contain other data values used to initialise the mobile agent. The disconnect

method simply sets all the channel addresses held by the mobile agent to null so that the

mobile agent object can be serialized prior to being transferred to another node.

Listing 2 shows the definition of the properties used by the mobile agent used for this

application which is called AdaptiveAgent.

class AdaptiveAgent implements MobileAgent {

 def ChannelInput fromInitialNode

 def ChannelInput fromVisitedNode

 def ChannelOutput toVisitedNode

 def ChannelOutput toReturnedNode

 def initial = true

 def visiting = false

 def returned = false

 def availableNodes = []

 def returnLocation

 def homeNode

 def requiredProcess = null

 def processDefinition = null

Listing 2. The Properties of Adaptive Agent.

The code fragments are presented using the Groovy [9] scripting language, the use of

which to define some JCSP helper classes has been described previously[10].

The channel fromInitialNode is used by the node that creates the agent to initialise

some of the agent’s properties. The channels fromVisitedNode and toVisitedNode are the

input and output channels used by the agent to communicate with a node that it is visiting.

Finally, the channel toReturnedNode is the channel the agent uses to output the algorithm

process from the agent to its originating node on its return. The content of the connect and

disconnect methods are not shown; suffice to say that the required channels are initialised

depending on the state of the agent.

The agent can be in one of three states as indicated by the Booleans initial, visiting and

returned. The list availableNodes will be initialised to hold the channel addresses of all the

nodes that have currently been enrolled into the distributed system. The system is able to

cope with the dynamic creation of nodes. Thus this list can be updated at any time while

the agent is in the initial state. The property returnLocation is the channel address to which

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

82 J. Kerridge / Process Discovery in Highly Parallel Systems

the agent should be transferred once it has found the required algorithm process. The value

of homeNode is the identity of the node creating this instance of the agent. The property

requiredProcess will be initialised to indicate the algorithm process that is sought and

finally processDefinition will contain the algorithm process definition once it has been

located on another node.

Listing 3 shows the processing undertaken within the mobile agent’s run method while

it is in the initial state. In the initial state the agent is either accepting updates to nodes that

are available or it receives the name of the required algorithm process and is thus sent to

find that process. In the former case the list of availableNodes is updated. In the latter case

the name of the required algorithm process is read from the fromInitialNode channel. The

state of the agent is then updated to reflect the fact that it will now be visiting other nodes.

The agent disconnects itself from the originating node. A channel address is obtained from

the list of availableNodes. This address is in the form of a net channel location that can be

used to directly create a net channel. The channel that is created, nextNodeChannel, is then

used by the agent to write itself to that channel using the Java this notation, which refers to

the object itself.

 def awaitingTypeName = true

 while (awaitingTypeName) {

 def d = fromInitialNode.read()

 if (d instanceof List) { // update to available nodes

 for (i in 0 ..< d.size) { availableNodes << d[i] }

 }

 if (d instanceof String) { // name of algorithm process

 requiredProcess = d // save name in agent

 awaitingTypeName = false

 initial = false

 visiting = true

 disconnect() // disconnect agent from node

 def nextNodeLocation = availableNodes.pop()

 def nextNodeChannel = NetChannel.any2net(nextNodeLocation)

 nextNodeChannel.write(this) // send agent to remote node

 }

 }

Listing 3. Agent Processing During Initialisation.

Listing 4 shows the processing during the visiting state. Initially, the requiredProcess

value is written by the agent to the local node, which responds with either null or the

required algorithm processDefinition.

If the processDefinition is not null, then the agent can return back to its originating

node. First, it writes its homeNode identifier to the local node so that it can record the

identities of the nodes to which this process definition has been sent. It then sets the state of

the agent to returned. It then creates the required net channel, homeNodeChannel, to link

back to the originating node using the value of returnLocation. It then disconnects from the

local channel infrastructure and writes itself back to its originating node.

If the algorithm process definition was not available at this node the agent disconnects

itself from the local channel infrastructure, pops the next address from the list of

availableNodes and then writes itself to the net channel thereby created.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 83

 toVisitedNode.write(requiredProcess)

 processDefinition = fromVisitedNode.read()

 if (processDefinition != null) {

 // have got the required algorithm process definition

 toVisitedNode.write(homeNode)

 visiting = false

 returned = true

 def homeNodeChannel = NetChannel.any2net(returnLocation)

 disconnect()

 // return home with the required process definition

 homeNodeChannel.write(this)

 }

 else { //determine next node to visit and go there

 disconnect()

 def nextNodeChannel =NetChannel.any2net(availableNodes.pop())

 nextNodeChannel.write(this)

 }

Listing 4. Agent Processing During the Visiting to Another Node.

Listing 5 shows the code that is obeyed when the agent returns back to its originating

node. This is a single line that causes the writing of a list comprising the process definition

and the name of the required process to the host node. The value of requireProcess is

required because a node can send out many agents in parallel and thus the node needs to

know which processDefinition has been written.

 toReturnedNode.write([processDefinition, requiredProcess])

Listing 5. Agent Return Code.

Throughout the agent coding it should be noted that each section of processing

terminates. This is absolutely necessary because a mobile agent must terminate so that it

can either be sent to another node or return back to its originating node.

3. System Architecture

In the architecture used to describe the system there are two permanent components as

shown in Figure 1. The DataGenerator process provides a shared network input channel

that can be connected to by any node, shown as a dotted arrow, thereby creating a

networked any2one channel. Similarly, the Gatherer process provides a shared network

input channel that can also be connected to by any node as indicated by the dotted arrow.

These processes are used simply to provide a basis for exercising the NodeProcesses.

On creation, a NodeProcess simply needs to be told the locations of these channels in

order to connect to both the DataGenerator and Gatherer processes. Once these

connections have been made, the NodeProcess creates a number of net input channels as

follows. The From Data Generator channel provides a means by which data can be

received from the DataGenerator by the NodeProcess. The Agent Visit Channel is the

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

84 J. Kerridge / Process Discovery in Highly Parallel Systems

channel upon which agents from other nodes will be input so they can interact with this

node. The Agent Return Channel is the channel used by an agent to return to its originating

node.

Once these channels have been created the NodeProcess outputs the location of the

From Data Generator and the Agent Visit Channel to the DataGenerator using the Nodes to

Data Generator channel. On receiving these locations the DataGenerator creates a one2one

channel from it to the node using the From Data Generator channel location. The

DataGenerator maintains a list of all the Agent Visit Channel locations, which it outputs to

all of the connected NodeProcesses whenever the list changes. The NodeProcess uses this

information to update its Agent with the locations of the Agent Visit Channels that it can

use when it searches for a data manipulation process. In addition, the Node also ensures

that the Agent holds the location of the Agent Return Channel so that a returning Agent

knows its home location.

Once the system has been invoked, the DataGenerator randomly sends data object

instances of any type to any of the nodes. If a NodeProcess already has an instance of the

required data manipulation process the data is sent to that process where it is modified and

subsequently output to the Gatherer process. If the node does not have an instance of the

required process then it informs the Agent of the data manipulation process it requires and

causes the Agent to be sent to the first location on its list of Agent Visit Channel locations.

Figure 1. Architecture of the Mobile Processes and Agents System.

In due course the Agent will return with the definition of the required algorithm

process. The returned algorithm process will be transferred to the Node and it will then be

connected into the Node. As soon as a Node sends an Agent to find a required process it

creates another instance of its Agent so that should another data object arrive for which it

does not have the data processing process then an Agent can be sent to find it immediately.

A Node also keeps a record on the data manipulation processes for which it has created

Agents, so that it does not send another Agent to search for the same data object type.

From Data Generator

Agent Return Channel

Agent Visit Channel

Nodes To Gatherer

Nodes To Data Generator

Data Generator

Gatherer

Node

Agent

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 85

Figure 2. The Node Architecture.

The operation of a Node matches the interactions described above. On receipt of an

input it determines if it is a list of Agent Visit Channel locations and if so updates the Agent

appropriately. If it is an instance of a data object, it determines its type and if it already has

an instance of the required process sends the data object to the required process. Otherwise,

it sends the Agent the required process type information, which the Agent can use when

visiting the other nodes.

Each of the data manipulation processes in a NodeProcess is invoked using the

ProcessManager class. When a process is received by a NodeProcess it creates a channel

by which the NodeProcess can send data objects to it. All such processes are connected to

the Nodes To Gatherer channel. Once a NodeProcess has received three such processes, its

internal architecture would be as shown in Figure 2, ignoring its Agent.

4. Life Cycle of a Mobile Agent within a Node

Listing 6 shows the code contained with a Node process that pertains to the initialisation of

an agent. Net channels are created for the agentVisitChannel and agentReturnChannel and

their associated net locations. The value of agentVisitChannelLocation is sent to the Data

Generator (not shown). The DataGatherer will then circulate the update to all connected

nodes. The internal channel used to connect the Node process to the agent is created as

NodeToInitialAgent. The agent myAgent is then created and then a call to its connect

method is undertaken. The initial data comprises the connection to the internal channel, the

location of the agent return net channel and finally the identity of the home node so that we

can record to which node a process is sent.

An instance of a ProcessManager is created and started, which causes myAgent to run

in parallel with the node. The node will read some data from the Data Generator and if it is

an instance of a list of available nodes then these can be sent to the agent so that it can

update its currentVisitList.

 Node Process

Algorithm

Process A

Algorithm

Process B

Algorithm

Process C

Nodes To Gatherer

From Data Generator

Agent

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

86 J. Kerridge / Process Discovery in Highly Parallel Systems

def agentVisitChannel= NetChannel.net2one()

def agentVisitChannelLocation = agentVisitChannel.getLocation()

def agentReturnChannel= NetChannel.net2one()

def agentReturnChannelLocation = agentReturnChannel.getLocation()

def NodeToInitialAgent = Channel.one2one()

def NodeToInitialAgentInEnd = NodeToInitialAgent.in()

def myAgent = new AdaptiveAgent()

myAgent.connect([NodeToInitialAgentInEnd,

 agentReturnChannelLocation, nodeId])

def initialPM = new ProcessManager(myAgent) // create ProcessManager

initialPM.start() // for myAgent and start

…

 def d = fromDataGen.read()

 if (d instanceof AvailableNodeList) { // update currentVisitList

 currentVisitList = []

 for (i in 0 ..< d.anl.size) {

 if (d.anl[i].toString()!=agentVisitChannelLocation.toString())

 currentVisitList << d.anl[i]

 }

 NodeToInitialAgent.out().write(currentVisitList) // update Agent

 }

Listing 6. Agent Initialisation Code.

Listing 7 shows the code snippet that deals with initialising the agent with the

algorithm process that is to be found, when a data type is received for which the algorithm

process is not available and then causing the agent to be sent on its transit of the network

and immediately creating a new agent instance.

if (! currentSearches.contains(dType)) {

 currentSearches << dType // append to currentSearches

 NodeToInitialAgent.out().write(dType) // and write to Agent

 initialPM.join() // wait for agent termination

 myAgent = new AdaptiveAgent() // create new agent instance

 myAgent.connect([NodeToInitialAgentInEnd,

 agentReturnChannelLocation, nodeId])

 initialPM = new ProcessManager(myAgent)

 initialPM.start() // and initialise the agent

 NodeToInitialAgent.out().write(currentVisitList)

}

Listing 7. Setting the Identity of the Process to be Found by the Agent.

A test is made to ensure that an agent has not already been sent for the process type,

dType. The value of dType is added to the current search list, currentSearches, and written

to the agent, which has already been initialised as per Listing 7 above. The process

manager then waits for the agent to terminate by calling initialPM.join(). Another instance

of myAgent is then created and initialised ready to be circulated to find another algorithm

process.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 87

Listing 8 shows the code associated with a visiting agent. Initially, the agent is read

from the agentVisitChannel as visitingAgent, which is then connected to the node. A

process manager is then started enabling the visitingAgent to run in parallel with the node

process. The required process type is read from the agent using the

NodeFromVisitingAgent channel. Original copies of the process are held in a vanilla data

structure and a test is made to determine whether or not this node has the required data

process. If the node does contain the required process then a search is made to find it

because processes are held in the order they are initialised.

Once the required process is found it is written to the agent using the

NodeToVisitingAgent internal channel, after which the identity of the node originating the

request is read in and saved. Otherwise a null is written to the agent indicating that the

required data process is not available at this node.

Finally, the node process calls visitPM.join(), which means that it waits until the agent

has terminated before continuing. The agent will have written itself back to its home node

if it has found the required data process or be written to another if this did not happen as per

Listings 4 and 5.

def visitingAgent = agentVisitChannel.read() //read agent and connect

visitingAgent.connect([NodeToVisitingAgentInEnd,

 NodeFromVisitingAgentOutEnd])

def visitPM = new ProcessManager(visitingAgent)

visitPM.start() // start agent

 // read name of required algorithm process

def typeRequired = NodeFromVisitingAgent.in().read()

if (vanillaOrder.contains(typeRequired)) { // node has process

 def i = 0

 def notFound = true //find process in the

 while (notFound) { // list of processes in

 if (vanillaOrder[i] == typeRequired) { // vanillaOrder

 notFound = false

 }

 else {

 i = i + 1

 }

 }

 NodeToVisitingAgent.out().write(vanillaList[i]) //write it to agent

 def agentHome = NodeFromVisitingAgent.in().read() //read agent home

}

else { //do not have process for this data type, write null to agent

 NodeToVisitingAgent.out().write(null)

}

visitPM.join() // wait for agent to terminate

Listing 8. Visiting Agent Code.

Listing 9 shows the coding associated with the returned agent, which is read in as

returnAgent from the agentReturnChannel.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

88 J. Kerridge / Process Discovery in Highly Parallel Systems

def returnAgent = agentReturnChannel.read() // read agent

returnAgent.connect([NodeFromReturningAgentOutEnd]) // connect to it

def returnPM = new ProcessManager (returnAgent)

returnPM.start() // start agent and read return data

def returnList = NodeFromReturningAgent.in().read()

returnPM.join() // wait for agent to terminate

def returnedType = returnList[1]

currentSearches.remove([returnedType]) // manipulate internal data

typeOrder << returnList[1]

connectChannels[cp] = Channel.one2one() //create internal structure

processList << returnList[0]

def pList = [connectChannels[cp].in(),

 nodeId, toGatherer.getLocation()]

processList[cp].connect(pList) // add to list of running processes

def pm = new ProcessManager(processList[cp])

cp = cp + 1

pm.start() // start new process in its own ProcessManager

Listing 9. Agent Returned Code.

The return node process then connects to the agent and causes the agent to start in a

new instance of ProcessManager. The node then reads a list of values from the agent (see

Listing 5). The agent then terminates and this is matched by a call by the node to

returnPM.join() which waits for the agent to terminate. The node then process then

extracts the returned data from the list and adds the new process to the node structure. The

new algorithm process will be started using the ProcessManager mechanism in the same

way as agents but this process will never terminate.

5. The Data Process Definition

Listing 10 shows the definition of one of the data types that can be sent into the system by

the Data Generator.

class Type1 implements Serializable {

 def typeName = "Type1" // properties of the class

 def int typeInstance // initialised when instance is

 def int instanceValue // constructed in Data Generator

 def processedNode // local variable

 def modify (nodeId) { // method used to manipulate data

 processedNode = nodeId

 typeInstance = typeInstance + (nodeId *10000)

 }

 def String toString(){

 return "Processing Node: $processedNode, Type: $typeName, " +

 "TypeInstanceValue:$typeInstance,Sequence:$instanceValue"

 }

}

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 89

Listing 10. Type1 Data Class Definition.

The class definition has a method called modify, that is called by its associated process,

shown in Listing 11 to manipulate the data.

The process extends an interface called DynamicMobileProcess that is very similar to

the MobileAgent interface. The interface requires the concrete implementation of abstract

methods connect and disconnect. In this case, disconnect will never be called because the

process never terminates. The connect method is used to provide channel connections to

the supporting node, which in this case is the connection to the Data Generator and the Data

Gatherer.

The process’ run method contains a while true loop and is thus never intended to

terminate. The run method reads in an instance of the associated data type definition,

makes a call to its modify method and then writes to modified instance to the Data Gatherer

process.

class Type1Process extends DynamicMobileProcess {

 def toGatherer // properties that are initialised

 def ChannelInput inChannel // when the process has its

 def int nodeId // connect method called

 def connect (l) {

 inChannel = l[0]

 nodeId = l[1]

 toGatherer = l[2]

 }

 def disconnect () {

 inChannel = null

 }

 void run() {

 def toGathererChannel = NetChannel.any2net(toGatherer)

 while (true) {

 def Type1 d = inChannel.read()

 d.modify(nodeId) // manipulate the data

 toGathererChannel.write(d)

 }

 }

}

Listing 11. Data process Definition.

A demonstration of the architecture shows that, provided the initial node processes

contain three different data type processes then any number of subsequent processes can be

executed and dynamically added to the network regardless of the process definitions they

contain, if any.

6. Conclusions and Further Work

This paper has discussed the construction of a process network that is able to transport

process definitions around the network on an as-needed basis. Thus a node in the network

may not have the required algorithm process definitions initially, but can create an agent

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

90 J. Kerridge / Process Discovery in Highly Parallel Systems

that is passed round the network until it finds the required process definition. The agent

then returns with a copy of the required algorithm process which can then be installed

dynamically in the originating node. Agents may obtain process definitions from any node

in the network and not just those that had the definition from the outset.

The system has been implemented and is demonstrable (see Code Availability later).

The system has been run on a network and also as individual programs within an Eclipse

environment with each Node instance executing in its own JVM. It is observable, as the

system executes, that every so often an agent is sent on a trip round the network to find a

required algorithm process. This occurs when a node that does not contain the required

algorithm process is sent an unknown data type by the Data Generator. Nodes can be added

dynamically and, depending on the algorithm processes available at the node, will cause

agents to be sent on an as-needed basis. The demonstration includes additional Nodes that

have no and ones that have all the required algorithm processes. Analysis of the messages

produced by the Nodes indicates from which Node they obtained the required algorithm

process. Similarly it can be observed which agents visited each Node and whether or not

the request could be satisfied.

Currently the system is lacking in some capabilities, such as, the ability to record data

type instances once an agent has been initiated to find a process definition. Thus data can

be lost while a node waits for the return of an agent with a particular process definition.

This limitation could be overcome by storing such data instances in a file and then

recovering them once the required algorithm process has been installed. Process definitions

are only stored in the node in memory and not then also saved in permanent storage. This

could be overcome by including the source code in the data returned to a node from the

node that has the algorithm definition. The source code could then be stored in permanent

storage at the receiving node.

The net2 architecture does have capabilities for determining whether or not a node is

alive and will throw an exception if an attempt is made to send a message to a node that is

not connected to the network. Thus the list of available nodes held by the agent may be

correct when the node starts its journey but it may subsequently attempt to send itself to a

currently non-functioning node. Thus the agent can dynamically determine whether a node

is available. In this case a node may not be able to find the required algorithm process.

This aspect of the required processing in a real system has been omitted to enable easier

description of the underlying concept.

Currently, the approach does not try to optimize the manner in which an agent searches

for the required algorithm process. An obvious optimization in a real system would be to

send the agent first to the node that was the source of the data that has been received by a

node, provided the source of the data was known. In a federated data system that is very

likely.

The capabilities of the architecture have not been assessed in a real application where

there are many versions of similar processing requirements that are updated on a regular

basis. Typical of this a large distributed systems that federate data from a number of

similar or identical systems, examples include health and police records. This requires a

group to take on the concept of parallel processing rather than using the techniques they

currently use, which is always a large challenge.

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

 J. Kerridge / Process Discovery in Highly Parallel Systems 91

Acknowledgements

The work reported in this paper would not be possible without the implementation of the

net2 package in JCSP. This was undertaken by Kevin Chalmers as part of his doctoral

research. A copy of his doctoral thesis is available [11].

My thanks to the anonymous reviewers of my paper, whose comments greatly

improved the presentation and content of this paper.

Code Availability

The code for this system is available as part of a larger project. The code is available at

https://bitbucket.org/jkerridge/ucape-examples/src and the specific code required to run the

demonstration associated with this paper is in the folder /c21/net2. The sources of the JCSP

and Groovy Parallel helper classes are also available in the same bitbucket repository.

References

[1] JCSP web site, http://www.cs.kent.ac.uk/projects/ofa/jcsp/

[2] K. Chalmers et al, A Critique of JCSP Networking , in Communicating Process Architectures 2008, P.

Welch et (eds), ISBN: 1-58603-907-3, IOS Press, Amsterdam, 2008

(available at http://www.iidi.napier.ac.uk/c/publications/publicationid/13186461)

[3] V. Pham and A. Karmouch, Mobile Software Agents: An Overview. IEEE Communication Magazine.

1998, July, pp. 26-37.

[4] E. Cesario et al, Programming Knowledge Discovery Workflows in Service-Oriented Distributed

Systems, Concurrency and Computation: Practice and Experience vol 25: 10, 2013, pp 1482-1504

(available at http://onlinelibrary.wiley.com/doi/10.1002/cpe.2936/abstract)

[5] F. Butt et al, Scalable Grid Resource Discovery Through Distributed Search, Int Jrnl of Distributed and

Parallel Systems, Vol 2, No 5, (2011). (available at http://arxiv.org/abs/1110.1685)

[6] W.M.P. van der Aalst, Distributed Process Discovery and Conformance Checking, in Fundamental

Approaches to Software Engineering, LNCS, Vol 7212, pp 1-25

[7] D. Field et al, The Minimum Information About a Genome Sequence (MIGS) Specification, National

Biotechnical May 2008: 26(5):541-547.

 (available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409278/)

[8] J. Kerridge et al, Mobile Agents and Processes Using Communicating Process Architectures, in

Communicating Process Architectures 2008, P. Welch et (eds), ISBN: 1-58603-907-3, IOS Press,

Amsterdam, 2008 (available at http://www.iidi.napier.ac.uk/c/publications/publicationid/13186463)

[9] K.Barclay and J.Savage, Groovy Programming, Morgan Kaufmann, 2007, ISBN: 0-12-372507-0

[10] J. Kerridge et al, Groovy Parallel! A Return to the Spirit of occam, in J Broenick et al(eds),

Communicating Process Architectures 2005, pp 13-28, ISBN 1-58603-561-4.(

(available at http://www.iidi.napier.ac.uk/c/publications/publicationid/9097759)

[11] K.Chalmers, Investigating communicating sequential processes for Java to support ubiquitous

computing. PhD thesis, Edinburgh Napier University, 2009

 (available from http://researchrepository.napier.ac.uk/3507/1/Thesis[1].pdf)

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

92 J. Kerridge / Process Discovery in Highly Parallel Systems

CPA 2014 preprint – final version will be available from http://wotug.org/ after the conference

